Thin Sections: Retrofitting the Minneapolis Park and Parkway System

by Lance M. Neckar

When the Minneapolis park and parkway system was established in the late nineteenth century, it stretched into largely undeveloped lands. Much of the system was built along the Mississippi River, tracts of swampland, and the shorelines of then distant lakes. The parkways, a central feature of the system, were designed by the landscape architect H.W.S. Cleveland to serve as promenades and carriage drives around these natural features. They also functioned as linear connectors between points in the developing park system. Frederick Law Olmsted (one of the designers of New York’s Central and Prospect Parks) was called upon to review the Minneapolis system in the mid-1880s. He declared it a fine system, with two exceptions. First, its “Grand Rounds” design was, at that date, made up largely of these linear, corridor-like parks and parkways connected with the city’s street pattern. Second, Olmsted felt that not enough attention had been paid to pedestrian pathways within the system.

As urban growth has surrounded much of the original parkway system, Olmsted’s critiques have gained force. This is especially true in heavily used “thin sections” of the system. To accommodate changing recreational uses (such as bicycles and in-line skating) additional pathways were constructed during the 1970s and 1980s to separate these uses from pedestrian pathways. Cruising, the twentieth century’s less genteel successor to promenading, has greatly increased automobile traffic around and between the lakes. Boaters, canoeists, and windsurfers also come to use the lakes. The pressures of enthusiastic users have pushed the limits of the thinnest sections of the system. And open public access to the parks makes it difficult to control the number of people engaging in any of these uses.

Combined, increasing numbers of users and users of the park system have placed exponentially greater pressure on the area between Lakes Calhoun and Harriet, formerly called Interlachen, as well as other thin sections of public space within the system. And for many, particularly those living near the lakes, the balance between open public access to the system and conservation of the system’s social, cultural, and ecological resources seems increasingly one-sided. Cruising, congestion, noise, and litter threaten to overwhelm the system’s attractions, especially during the peak summer season.

The Interlachen area offers a highly visible, site-specific example of the pressures affecting the balance between open use and conservation of the various resources of the Minneapolis park and parkway system. A prominent and popular metropolitan recreational destination, as well as a Minneapolis traffic corridor, the area also defines the edge of the Minneapolis neighborhood of Linden Hills. Rethinking the design of this specific physical and social space entails rethinking the balance among these various functions of the park and parkway system, on both the site-specific and system-wide scales.

Efforts in this direction have already begun. A citizen advisory committee has made recommendations for the “Grand Rounds” parkway system as a whole, and a second advisory committee has begun consideration of specific recommendations for the Lake Harriet area. This report is offered as a contribution to these efforts. It considers the possible impact of recommendations that have already been made, and suggests some additional means by which the problems facing the Interlachen area might be mitigated. Although focused on a specific area of the park and parkway system, this report also addresses the complicated balance of functions and interests that characterizes many of the system’s “thin sections.”

Automobile Traffic and the Grand Rounds Report

The Grand Rounds Citizen Advisory Committee—jointly appointed by the Minneapolis Parks Commissioners, Mayor, and City Council—recently undertook the task of rethinking the whole Minneapolis parkway system. In June 1995, they released a report of their recommendations. Neither surprisingly nor incorrectly, they identified the automobile as the chief villain in the system. Their recommendations for retrofitting the system accordingly paid particular attention to the problem of vehicular traffic.

The lake parkways and Interlachen area were among the areas that received specific attention in the Grand Rounds Committee’s report. Among the area’s many attractions is the highly popular Lake Harriet bandstand. Currently, the area is marked by a confusing geometric pattern of roads and pathways generated by the many modes of traffic that must navigate this small knuckle
of land between the lakes. Automobiles dominate, following a curvilinear roadway that hugs the lake edges and then splits into two one-way roads that slice through the physical landscape of the area’s William Morse Berry Park. The one-way roads attempt to make the best use of the thin sections of land that are available. Nonetheless, they make an island of the park and put automobile traffic in close proximity to pathways for pedestrians, bicyclists, and skaters, especially at the crowded intersections that provide connections to the lakeside paths and parkways.

The Grand Rounds Committee recommended that the City of Minneapolis reduce automobile traffic around and between the lakes by experimental and possible permanent closure of three major sections of roadway in the area (Figure 1):

- Westbound one-way traffic would be removed from the northern edge of Lake Harriet by closing Lake Harriet Parkway between the Rose Garden and the Bandstand. Traffic would be rerouted around Lakewood Cemetery to 36th Street, at the cemetery’s northern edge.
- East Lake Calhoun Parkway would be closed from 36th to Lake Street.
- The south end of Lake Calhoun Parkway would be closed between Xerxes Avenue and William Morse Berry Parkway.

The Grand Rounds Committee’s proposed roadway closings would accomplish several objectives. By interrupting the flow of traffic around the lakes, the problems of cruising and congested traffic would presumably be alleviated. Automobile traffic would be removed from thin and sensitive sections of land such as that between the Thomas Sadler Roberts Bird Sanctuary and the northern beach area of Lake Harriet.

There are, however, some disadvantages to the Committee’s proposals. The continuity of the system would be broken for many users. While aimed at reducing automobile traffic around the lakes, the proposed roadway closings do not entirely close off the lake parkways to traffic. Closing limited sections of the parkways might effectively divert all remaining traffic either into the loop of one-way roads circling the play and picnic area of William Morse Berry Park (Figure 1), or into the neighborhoods surrounding the lakes. The roadway closing proposals, in other words, focus primarily on the area’s function as a through-traffic corridor. Consequently, they offer only a partial solution to the area’s problems.

A New Proposal for the Interlachen Area

Automobiles are a significant problem around and between the lakes, but they are only one element in a congested flow of traffic through the area. And the heavy use of automobiles is not a problem specific to this site only. Automobile traffic is a reality that will not go away without larger scale efforts to control traffic in the metropolitan area.

The following design proposal considers how changes in the physical distribution of automobile traffic and other uses of the Interlachen area might better balance these various uses. By focusing on specific details of the area’s physical landscape, we consider ways in which this compact space might be enhanced to better accommodate the area’s many uses without restricting or closing off the area to automobile traffic. Such site-specific enhancements will affect not only the physical landscape of the park and parkway system, but also the ways in which the system is able to respond to the many demands placed upon it.

Less radical than the roadway closure plans, this proposal thus seeks cost-effective solutions to the area’s problems that are based on the existing features of its landscape. The proposal has two specific objectives. First, it seeks to segregate modes of traffic in the area more clearly so that conditions for non-automobile users, especially pedestrians, will improve. Second, it seeks to emphasize ecological features of the landscape that have been obscured as the area has developed. Generally, the proposal seeks to strike a balance among the various regional, city, and neighborhood functions the area is asked to serve.
Currently, the intersection at the corner of East Lake Calhoun Parkway and William Morse Berry Parkway, at the northern end of the Interlachen area, is one of the area’s most congested sites. This intersection brings all modes of traffic together at the same spot, and then tries to keep them within parallel lanes at a key turn in the system. Bicyclists and pedestrians consequently follow the same routes as cars, which often run right next to them.

Two elements of the design proposal are intended to move pedestrian traffic away from this congested tangle of right-of-ways. The first is a tree-lined sidewalk running along the east side of East Lake Calhoun Parkway, which would connect with a new platform for the trolley running between Lakes Harriet and Calhoun (Figure 2). At present, there is an incomplete sidewalk at this location. The trolley simply stops and turns around at the proposed location of the new platform without taking on new passengers (passengers get on and off the trolley at the Lake Harriet station). Advertising to trolley passengers the opportunity to get on or off at either lake would provide a new means of transport through the area. And the addition of the trolley stop, together with a complete, shaded sidewalk, might attract pedestrian traffic away from the crowded lake side of East Lake Calhoun Parkway. Similar proposals have been suggested by the East Calhoun Community Organization.

The second element places a cottonwood allee (a pathway bordered by cottonwood trees) on either side of the ridge that marks the pipe connecting Lakes Calhoun and Harriet, and controlling the flow of water between the lakes (Figure 2). This pipe was installed to replace the original creek meander that connected the lakes and ran through wetlands in the area between William Morse Berry Parkway and Lake-Cottwood Cemetery’s Cemetery Lake.

The cottonwood allee would provide a more direct route for pedestrian traffic between the lakes than the current pathway, which winds through the area to the west of William Morse Berry Parkway. It would also move pedestrian traffic away from the bicycle and automobile traffic routes, which follow William Morse Berry Parkway. The allee would begin near relocated bus stops and the parking area at the intersection of East Lake Calhoun Parkway and William Morse Berry Parkway, and would continue over a bridge at the trolley line all the way to the Lake Harriet bandstand. Placed along the line of the pipe, the allee would also act as a symbolic marker of the original creek meander between the lakes. Elliptical marshes on either side of the allee would represent the area’s original wetland, and more practically, would occupy a low-lying area that is still prone to flooding.

Moving to the Lake Harriet end of the area, a third element of the design proposal would place a symbolic, interpretive marsh at the Harriet shoreline, just south of the Lake Harriet bandstand and concession area (Figure 2). Placed at a site where run-
off from the Linden Hills neighborhood reaches the lake, the marsh would demonstrate the function of the original shoreline marshes. These marshes, dotted with sedges and rushes, filtered the sediments in surface runoff and cleansed the lake water. As an interpretive site, the marsh could inform the public about the ecological functions of these natural areas and address current controversies over mowing and other landscape management policies in the park system designed to restore such ecological functions. The marsh would also begin to reshape an area that suffers from congested traffic patterns. Canoe racks which currently occupy the site of the proposed marsh would be relocated to an area near the parking lot for the bandstand; at present, canoeists block traffic as they unload and portage their canoes across the bicycle path's right-of-way.

The final element of the proposal would develop an existing but little-used pathway through the Thomas Sadler Roberts Bird Sanctuary, which occupies a marsh above the northern edge of Lake Harriet (Figure 2). The Christian Bossen pathway currently runs through the Sanctuary, connecting the area between the lakes with neighborhoods to the east. Stairs and an antiquated turnstile at the entrance to the pathway do little, however, to encourage its use. Removing the turnstile, installing a handicap-accessible ramp, and enhancing the pathway with plantings of native tamaracks might encourage more use of the pathway, potentially drawing some pedestrian traffic away from the crowded northern edge of Lake Harriet. These improvements to the pathway would also highlight an already existing link between the area and its adjoining neighborhoods.

Conclusions
This design proposal for the Interlachen area may open community discussion about how close attention to landscape design might help alleviate pressure on heavily used sections of the park and parkway system without prohibiting its existing uses. The Grand Rounds Committee’s focus on the impact of automobiles on the system identifies a clear problem. Diverting traffic away from portions of the parkway is, however, unlikely to significantly affect the dominating presence of cars in the system. Moreover, automobiles are not the only use putting pressure on the Interlachen area, and their removal would address only part of the area’s congestion problems, while destroying the fundamental connected quality of the system.

Assuming that, in the absence of wider scale attempts to address metropolitan transportation issues, automobile traffic will be a reality either on or around the parkway, this proposal suggests ways in which traffic of all sorts might be redirected and segregated to relieve congestion. It also suggests ways in which the natural resources of the system, some of which are now obscured, might be highlighted and adapted to accommodate the area’s uses.

The problems facing the Interlachen area are primarily problems of too much success. The area’s many attractions—the lakes, surrounding parks, and neighborhoods—have drawn large numbers of people into a tight space. Congestion threatens to overwhelm these attractions. Maintaining the balance between conservation of the area’s resources and open public access to their attractions requires constant tinkering. And it requires maintaining the balance among the many functions the park and parkway system is asked to serve.

Lance M. Neckar is an associate professor of landscape architecture at the University of Minnesota and a practicing landscape architect. His published research work includes “Fast-Tracking Culture and Landscape,” a study of H.W.S. Cleveland’s approach to park system design in the Midwest. Neckar’s recent urban design work has won two Honor Awards from the Minnesota Chapter of the American Society of Landscape Architects.

This study was supported in part by an interactive research grant from CURA and the Office of the Vice President for Research, University of Minnesota. Interactive research grants have been created to encourage University faculty to carry out research projects that involve significant issues of public policy for the state and that include interaction with community groups, agencies, or organizations in Minnesota. These grants are available to regular faculty members at the University of Minnesota and are awarded annually on a competitive basis.